Sensitivity Analysis of Continuous Time Bayesian Network Reliability Models

نویسندگان

  • Liessman Sturlaugson
  • John W. Sheppard
چکیده

We show how to perform sensitivity analysis on continuous time Bayesian networks (CTBNs) as applied specifically to reliability models. Sensitivity analysis of these models can be used, for example, to measure how uncertainty in the failure rates impact the reliability of the modeled system. The CTBN can be thought of as a type of factored Markov process that separates a system into a set of interdependent subsystems. The factorization allows CTBNs to model more complex systems than single Markov processes. However, the state-space of the CTBN is exponential in the number of subsystems. Therefore, existing methods for sensitivity analysis of Markov processes, when applied directly to the CTBN, become intractable. Sensitivity analysis of CTBNs, while borrowing from techniques for Markov processes, must be adapted to take advantage of the factored nature of the network if it is to remain feasible. To address this, we show how to extend the perturbation realization method for Markov processes to the CTBN. We show how to exploit the conditional independence structure of the CTBN to perform perturbation realization separately for different subnetworks, making the technique able to handle larger networks. This in turn allows the CTBN to model more complex systems while keeping sensitivity analysis of the model tractable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

استفاده از آنتروپی شانون در پیش‌پردازش ورودی شبکه بیزین جهت مدل‌سازی سری‌های زمانی

Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...

متن کامل

Improved Dynamic Fault Tree modelling using Bayesian Networks

1. Background In modelling fault-tolerant systems , space state based approaches such as dynamic fault trees (DFTs) [4], have been shown to increase the power of traditional combinatorial models, like static fault trees (FTs) [9]. However, in practice, these approaches have severe limitations when dealing with the increasing complexity of component dependencies and failure behaviours of today’s...

متن کامل

A Decision between Bayesian and Frequentist Upper Limit in Analyzing Continuous Gravitational Waves

Given the sensitivity of current ground-based Gravitational Wave (GW) detectors, any continuous-wave signal we can realistically expect will be at a level or below the background noise. Hence, any data analysis of detector data will need to rely on statistical techniques to separate the signal from the noise. While with the current sensitivity of our detectors we do not expect to detect any tru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015